
Programovanie, algoritmy, zložitosť (PAZ1a) 13.1.2026

 Záverečný test
Zadanie

 Dvakrát meraj (rozmýšľaj), raz rež (programuj)

Dôležité pravidlá a informácie (viac na stránke predmetu):

 čas na riešenie úloh je 240 minút,

 nie je dovolená žiadna (elektronická aj neelektronická) komunikácia s kýmkoľvek okrem dozoru

 v prípade akýchkoľvek problémov alebo z dôvodu ohodnotenia riešenia kontaktujte dozor,

 riešenia je možné nechať si ohodnotiť aj priebežne, povinná časť musí byť ohodnotená do 150

minút od začiatku,

 funkčnosť každej metódy musí byť preukázaná spustením na vami vytvorenom testovacom

vstupe, nespustiteľné metódy neumožňujú zisk príslušných bodov,

 všetky inštančné premenné musia byť neverejné.

Amatérska badmintonová liga

Motivácia: Študenti UPJŠ sa rozhodli, že

počas letného semestra 2025/2026 chcú

mať sezónu amatérskej badmintonovej ligy.

Hrá sa 14 týždňov, teda od pondelka 9.2. do

nedele 17.5. hráči vždy hrajú jeden proti

jednému. Badminton hrajú podľa

nasledujúcich pravidiel zápas sa hrá na 2

víťazné hry, víťaz hry musí mať aspoň 21

bodov a vyhrať aspoň o 2 body. Zápas

môže skončiť 21:13, 22:20 ak prvý hráč

vyhral už po dvoch hrách alebo 17:21,

24:22, 21:19 ak sa hralo na 3 hry.

Pohľad analytika: Pri implementácii

aplikácie budeme potrebovať:

 triedu Match, ktorá reprezentuje jeden

zápas,

 triedu Season, ktorá bude uchovávať

zoznam všetkých zápasov v sezóne.

Zadanie: V ľubovoľnom balíčku vytvorte triedu Match obsahujúcu dátové položky prístupné cez gettre

(a podľa uváženia aj modifikovateľné cez settre):

 playerA – meno prvého hráča (napr. Jožko Mrkvička, alebo Mária Nováková),

 playerB – meno druhého hráča,

 score – v tvare A1:B1, A2:B2 ak sa hrali 2 hry alebo A1:B1, A2:B2, A3:B3 ak sa hrali 3 hry

(napr. 21:18, 23:21 alebo 21:15, 21:23, 17:21),

 day – poradové číslo dňa sezóny (napr. 8), pondelok 9.2. je deň 0,

 startTime – čas začiatku prvého setu v tvare HH:MM (napr. 20:30),

 endTime – čas konca posledného setu v rovnakom tvare ako startTime, môžete predpokladať,

že sa žiaden zápas nehral cez polnoc,

 spectators – zoznam hráčov ligy ktorí sledovali zápas ako diváci, (napr. „Ján Novák, Mária

Nováková“), ak je divákov viac sú oddelení čiarkami.

Upozornenie: Zadanie pre triedu Match predpisuje dátové položky prístupné cez gettre. Aké privátne

inštančné premenné použijete na uloženie týchto dátových položiek je na vašom rozhodnutí.

Ďalej vytvorte aj triedu sk.upjs.finalTerm.Season, ktorá bude uchovávať zoznam zápasov (Match).

 zdroj: raphaelai.org

Konštruktory a pridávanie prezentácií do plánu podujatia (povinné):

 public Match(String playerA, String playerB, String score, int day, String startTime,

String endTime, String spectators) - použije sa na vytvorenie zápasu s divákmi.

 public Match(String playerA, String playerB, String score, int day, String startTime,

String endTime) - použije sa na vytvorenie zápasu bez divákov.

 public void pridaj(Match match) – inštančná metóda v triede Season, ktorá pridá zápas do

sezóny.

Práca s reťazcami a súbormi (povinné):

V triede Match:

 public static Match fromString(String input) - statická metóda, ktorá vráti referenciu na

novovytvorený objekt triedy Match. Parameter je String v tvare

"playerA;playerB;score;day;startTime;endTime;spectators", resp.

"playerA;playerB;score;day;startTime;endTime", pre zápas bez divákov.

Poznámka: Poznámka: Scanner-u môžete povedať, že oddeľovač má byť bodkočiarka zavolaním jeho

metódy useDelimiter(";").

 public String toString() – vráti reťazec vhodne reprezentujúci údaje o zápase.

V triede Season:

 public static Season loadSeason(String fileName) – statická metóda, ktorá z uvedeného súboru

prečíta informácie o všetkých zápasoch sezóny, pričom v každom riadku bude popis jedného zápasu.

 public void saveSeason(String fileName) – uloží všetky zápasy v sezóne do súboru v tvare, ktorý

vie spracovať metóda loadSeason.

 public String toString() – vráti reťazec vhodne reprezentujúci všetky zápasy sezóny.

Za povinnú časť bude udelených 15 bodov. Nasledujúce (nepovinné) úlohy môžete riešiť

v ľubovoľnom poradí. Ale riešenie jednej môže zjednodušiť nasledujúce.

Odporúčané (nepovinné) metódy triedy Match:

 Odporúčame vytvoriť si pomocnú metódou, ktoré vrátia score vo formáte, ktoré je vhodný na

spracovanie v ďalších metódach.

 Odporúčame vytvorenie metódy, ktorá vráti čas jedného zápasu v minútach.

 Odporúčame vytvorenie metódy, ktorá vráti zoznam divákov vo vhodnom formáte.

 Odporúčame vytvorenie metódy, ktoré vrátia víťaza a/alebo porazeného.

 Ďalšie pomocné metódy podľa potreby.

Inštančné metódy triedy Season:

Ak niektorá z metód nevie vrátiť referenciu na objekt s požadovanými vlastnosťami, metóda nech vráti

null.

 [1b] public int numberOfMatches() – vráti koľko zápasov sa odohralo v sezóne.

 [1b] public int playTime() – koľko minút trvali dokopy všetky zápasy sezóny.

 [2b] public int longestMatch() – vráti dĺžku najdlhšieho zápasu v minútach.

 [2b] public List<String> players() – vráti zoznam všetkých divákov, bez duplicít.

 [2b] public Match topMatch() – vráti zápas, ktorý mal najviac divákov.

 [2+1b] public double twoGameMatches() – vráti koľko % zápasov sa hralo iba na 2 hry, výsledok

zaokrúhlite na 2 desatinné miesta.

 [3b] public int victoriesOf(String player) – vráti koľko zápasov vyhral hráč zadaný parametrom

player.

 [3b] public Map<String, Integer> matchesPerPlayer() – vráti mapu, kde každému hráčovi je

priradené koľko zápasov odohral.

 [3b] public String topSpectator() – vráti meno diváka, ktorý videl najviac zápasov.

 [4b] public List<String> nightPlayers(String time) – vráti zoznam všetkých hráčov, bez duplicít,

ktorí každú svoju hru začali po čase zadanom parametrom time.

 [3b] public int[] dailyHistogram() – metóda vráti histogram počtu odohraných hier počas dňa

v týždni (pondelok 0, utorok 1, streda 2, ..., nedeľa 6), napr. na indexe 2 je počet hier odohraných v

stredu. Môžete predpokladať, že sezóna začala v pondelok.

 [4b] Napíšte metódu public Map<String, Integer> eloAfterSeason(), ktorá vráti hodnotenie

„ELO“ pre každého hráča na konci sezóny. Na začiatku sezóny začne každý hráč s ELO 1000. Po

každom zápase sa mení ELO víťaza aj porazeného. Pred hrou mali víťaz a porazený nasledujúce

hodnotenie, eloWinnerBefore a eloLoserBefore, z nich sa spočíta winnerChance pre každý zápas:

𝑤𝑖𝑛𝑛𝑒𝑟𝐶ℎ𝑎𝑛𝑐𝑒 =
1

1 + 10𝑥
, 𝑘𝑑𝑒 𝑥 =

(eloLoserBefore − eloWinnerBefore)

400

Hodnotenie po hre je 𝑒𝑙𝑜𝑊𝑖𝑛𝑛𝑒𝑟𝐴𝑓𝑡𝑒𝑟 = 𝑒𝑙𝑜𝑊𝑖𝑛𝑛𝑒𝑟𝐵𝑒𝑓𝑜𝑟𝑒 + 32(1 − 𝑤𝑖𝑛𝑛𝑒𝑟𝐶ℎ𝑎𝑛𝑐𝑒),

 𝑒𝑙𝑜𝐿𝑜𝑠𝑒𝑟𝐴𝑓𝑡𝑒𝑟 = 𝑒𝑙𝑜𝐿𝑜𝑠𝑒𝑟𝐵𝑒𝑓𝑜𝑟𝑒 − 32(1 − 𝑤𝑖𝑛𝑛𝑒𝑟𝐶ℎ𝑎𝑛𝑐𝑒).

Pozn.: Táto metóda vyžaduje aby sa vstup spracovával chronologicky. Môžete predpokladať, že

zápasy sú usporiadané chronologicky. Alebo ich usporiadajte, viď posledná úloha.

 [4b] public int longestPersonalStreak(String player) – vráti najviac koľko dní za sebou daný

hráč odohral bez prestávky.

 [4b] public boolean watchAndPlay(String player) – vráti či daný hráč videl aspoň jeden zápas

každého svojho súpera.

 [6b] public void topKWinratePlayers(int k) – metóda vypíše k hráčov ktorí majú najlepší pomer

víťazstiev ku počtu ich hier. Hráči sú usporiadaný podľa pomeru. Ak je k väčšie ako počet hráčov,

tak metóda vypíše všetkých.

 [6b] public boolean everyonePlaysEveryone() – metóda vráti či každý hráč hral aspoň raz s každým

iným hráčom počas sezóny.

Nezaradené úlohy

[3b] Pridajte nekontrolovanú výnimku InvalidScoreFormatException, ktorá sa bude vhodne týkať prípadu,

ak je score v nekorektné. To znamená, že je zlý počet hier alebo počet bodov nespĺňa, že víťaz musí mať

aspoň 21 bodov a víťaz musí vyhrať o 2 body. Výnimku použite na vhodnom mieste.

[3b] Vytvorte metódu, ktorá usporiada všetky zápasy v sezóne chronologicky (podľa dňa začiatku a času

začiatku).

