

Programovanie, algoritmy, zložitosť (PAZ1a) 18.12.2025

 Záverečný test
Zadanie

 Dvakrát meraj (rozmýšľaj), raz rež (programuj)

Dôležité pravidlá a informácie (viac na stránke predmetu):

• čas na riešenie úloh je 240 minút,

• nie je dovolená žiadna komunikácia s kýmkoľvek okrem dozoru,

• v prípade akýchkoľvek problémov alebo z dôvodu ohodnotenia riešenia

kontaktujte dozor,

• riešenia je možné nechať si ohodnotiť aj priebežne, povinná časť musí byť

ohodnotená do 150 minút od začiatku

• funkčnosť každej metódy musí byť preukázaná spustením na vami

vytvorenom testovacom vstupe, nespustiteľné metódy neumožňujú zisk

príslušných bodov,

• všetky inštančné premenné musia byť neverejné.

Moreplavci

Motivácia: Moreplavectvo má bohatú históriu od čias objaviteľských ciest Krištofa Kolumba až po

moderné vedecké expedície. Každý prístav si vedie záznamy o svojich lodiach - o tých, ktoré už dorazili,

aj o tých, ktoré sú ešte na mori.

Vašou úlohou je pripraviť podklad pre informačný systém prístavu, ktorý bude evidovať všetky lode

patriace do flotily. Či už ide o tie, ktoré sa aktuálne plavia, alebo tie, ktoré sa už úspešne vrátili.

Pohľad analytika: Pri implementácii budeme potrebovať:

• triedu Ship, ktorá uchováva informácie o jednej lodi, resp. plavbe,

• triedu Port, ktorá bude uchovávať zoznam všetkých lodí evidovaných v prístave.

Zadanie: V (ľubovoľnom) balíčku vytvorte triedu Ship obsahujúcu dátové položky prístupné cez gettre

(a podľa uváženia aj modifikovateľné cez settre):

• name – meno lode,

• departure – mesiac a rok odchodu lode z prístavu vo formáte MM/RRRR (napr. 09/1519),

• lastMessage – mesiac a rok poslednej informácie o lodi (rovnaký formát ako departure). V

prípade ak o lodi nie sú žiadne správy, bude tam uvedené N/A,

• mission – označuje názov misie, ku ktorej loď patrí,

• armed – označuje, či je loď a jej posádka ozbrojená,

• arrival – presný dátum príchodu do prístavu vo formáte DD.MM.RRRR (napr. 08.09.1522),

• sailorCount – počet námorníkov na lodi (v čase odchodu).

Upozornenie: Zadanie pre triedu Ship predpisuje dátové položky prístupné cez gettre. Aké privátne

inštančné premenné použijete na uloženie týchto dátových položiek je na vašom rozhodnutí.

Jedna loď sa môže v zozname opakovať aj viackrát. Každý záznam reprezentuje jednu plavbu. Každá loď

bude v zozname bez času príchodu maximálne jedenkrát. Môžete predpokladať korektný vstup. Odchod a

príchod sa nepovažuje za získanie správy o lodi. Tento dátum bude iný (avšak môže mať rovnaký mesiac

ako odchod alebo príchod).

Ďalej vytvorte triedu Port, ktorá bude uchovávať zoznam lodí.

Konštruktory a evidovanie lodí (povinné):

• public Ship(String name, String departure, String lastMessage, String mission, boolean

armed, String arrival, int sailorCount) - použije sa na evidovanie lode po príchode

• public Ship(String name, String departure, String lastMessage, String mission, boolean

armed, int sailorCount) - použije sa na evidovanie lode, ktorá je stále na mori

• public void addShip(Ship ship) – metóda v triede Port, ktorá zaeviduje údaje o lodi.

Práca so súbormi (povinné):

V triede Ship:

• public static Ship fromString(String input) - statická metóda, ktorá vráti referenciu na

novovytvorený objekt triedy Ship. Parameter je reťazec v tvare

"name;departure;lastMessage;mission;armed;arrival;sailorCount", resp.

"name;departure;lastMessage;mission;armed;sailorCount" ak loď je ešte na mori.

Poznámka: Scanner-u môžete povedať, že oddeľovač má byť bodkočiarka zavolaním jeho metódy

useDelimiter(";").

• public String toString() – vráti reťazec vhodne reprezentujúci údaje o lodi.

V triede Port:

• public static Port loadShips(String fileName) – statická metóda, ktorá z uvedeného súboru

prečíta informácie o prístave (zoznam lodí), pričom v každom riadku bude popis jednej lode (plavby).

• public void saveShips(String fileName) – uloží všetky zaevidované plavby (lode) do súboru

v tvare, ktorý vie spracovať metóda loadShips.

• public String toString() – vráti reťazec vhodne reprezentujúci kompletný popis plavieb (lodí).

Za povinnú časť bude udelených 15 bodov. Nasledovné úlohy môžete riešiť v ľubovoľnom poradí:

Metódy triedy Ship (úlohy sú zoradené podľa počtu bodov):

• [1b] Doplňte statickú premennú, ktorej nebude možné nastaviť inú hodnotu a bude viditeľná aj v

iných triedach. Táto premenná bude uchovávať referenciu na reťazec “N/A”. Vhodne použite túto

premennú v príslušných metódach.

• [3b] Trieda Ship nech implementuje rozhranie Comparable<Ship>. Implementujte príslušnú metódu

takým spôsobom, aby po zotriedení boli najprv uvedené lode, ktoré sa už vrátili do prístavu zoradené

podľa dátumu príchodu (tie najnovšie ako prvé) a následne lode, ktoré sa ešte nevrátili zoradené podľa

počtu námorníkov (loď s najväčším počtom ako prvá).

• [3b] public int monthsAway() - vráti koľko mesiacov bola loď mimo prístavu - čas medzi odchodom

a príchodom.

Metódy triedy Port (úlohy sú zoradené podľa počtu bodov):

• [1b] public int arrivedShips() - vráti počet realizovaných plavieb - koľko lodí sa už vrátilo do

prístavu.

• [1b] public int sailorsAway() - vráti počet námorníkov, ktorí sú aktuálne na mori.

• [2b] public Map<String, Integer> sailorsPerMission() - vráti mapu, kde bude každej misii

pridelený celkový počet námorníkov.

• [2b] public List<String> missionNames() - vráti zoznam názvov misií zoradený podľa abecedy,

kde sa každý názov nachádza najviac jedenkrát.

• [2b] public Ship firstArrival() - vráti loď, ktorá prišla do prístavu ako prvá.

• [3b] public double armedSailorsMedian() - vráti medián počtu námorníkov pre všetky ozbrojené

lode. Medián je hodnota, pre ktorú platí, že polovica hodnôt je väčších alebo rovných ako medián a

polovica je menších alebo rovných. Ak je počet hodnôt párny, medián sa počíta ako priemer dvoch

hodnôt “v strede”.

• [3b] public int multipleDepartures() - vráti počet lodí, ktoré vyrazili na more viac ako raz.

• [4b] public boolean safePort() - vráti true ak je prístav bezpečný. Prístav je bezpečný ak o každej

lodi existuje nejaká správa. V žiadnej lodi sa nenachádza viac ako 50 námorníkov (v ozbrojenej lodi

maximálne 30). Každá misia obsahuje minimálne 3 lode a žiadna ozbrojená loď nevyplávala v

zimných mesiacoch (mesiace november-marec).

• [4b] public String topMission() - vráti názov misie, v ktorej je zaradených najviac lodí. Pri

rovnosti počtu lodí rozhoduje celkový počet (súčet) námorníkov v danej misii. Riešenie, ktoré bude

prechádzať zoznamom lodí viackrát získa iba 2 body.

• [4b] public List<String> wreckedShips(String currentDate) - vráti zoznam lodí, ktoré sa rozbili

(stroskotali). Loď je stroskotaná ak ešte neprišla do prístavu a za posledný rok neprišla žiadna správa.

Aktuálny dátum je v parametri currentDate v rovnakom formáte ako parameter lastMessage

(MM.RRRR).

• [4b] public double ratioOfArmedSailors(String mission) - pre zadanú misiu vráti koľko percent

námorníkov je na ozbrojených lodiach. Percento je zaokrúhlené na dve desatinné miesta. Riešenie

bez zaokrúhlenia je za 2 body.

• [6b] public int maxShipsAtSea() - vráti maximálny počet lodí, ktoré boli naraz na mori. Ide o počet

lodí na mori v rámci jedného mesiaca. Mesiac odchodu a príchodu je časom na mori (a všetky mesiace

medzi nimi). Hľadáme maximálnu hodnotu počtu lodí.

• [7b] public void newMessages(Ship ship, String currentDate, Map<String, String> messages)

- metóda eviduje novú správu od lode (parameter ship). Táto správa príde v dátum (currentDate -

formát si môžete vybrať DD.MM.RRRR alebo MM.RRRR). Takáto metóda je za 2 body. Navyše je v

parametri messages zoznam správ, ktoré zozbierala táto loď. Je to mapa, kde kľúčom je meno inej

lode a hodnotou dátum poslednej správy, ktorá sa dostala k tejto lodi (MM.RRRR). Aktualizujte

zoznam lodí (referencovaný inštančnou premennou), aby pri každej lodi bol čas poslednej správy

(novšia hodnota z poslednej správy do prístavu a z poslednej správy k lodi ship). V mape môžu byť

aj lode z iného prístavu.

Ďalšie úlohy:

• [2b] Vytvorte triedu ShipComparator, ktorá implementuje rozhranie java.util.Comparator<Ship> s

príslušnou metódou compare, aby po aplikovaní triediaceho algoritmu boli zoradené lode podľa

mesiaca odchodu (departure) bez ohľadu na rok a v rámci jedného mesiaca podľa mena lode.

Alternatívne môžete použiť anonymnú triedu alebo lambda výraz.

• [4b] Vytvorte nekontrolovanú výnimku InvalidDateFormatException a použite ju na všetkých

miestach v triede Ship, kde sa nastavuje hodnota premenných departure, lastMessage a arrival.

